
Applying AutoBayes to the Analysis of Planetary Nebulae Images
(Extended Abstract)

Bernd Fischer Johann Schumann

RIACS / NASA Ames Research Center
E-mail:

�
fisch,schumann � @email.arc.nasa.gov

Abstract

We take a typical scientific data analysis task, the analy-
sis of planetary nebulae images taken by the Hubble Space
Telescope, and describe how program synthesis can be used
to generate the necessary analysis programs from high-
level models. We describe the AUTOBAYES synthesis sys-
tem, discuss its fully declarative specification language, and
present the automatic program derivation starting with the
scientists’ original analysis [7].

1 Introduction

Planetary nebulae are remnants of dying stars. Scientists
try to understand them by collecting and analyzing data,
for example images taken by the Hubble Space Telescope
(HST). The analysis follows a general pattern in science:
formulate the initial understanding of the underlying physi-
cal processes as a model, fit the model to the collected data,
interpret the results, and refine the model as long as neces-
sary. Since the underlying processes and the data collection
are both fraught with uncertainty and noise, statistical mod-
els are used.

In most disciplines, the large data volumes collected by
modern instruments make computer support indispensable.
Consequently, development and refinement of the necessary
data analysis programs have become a bottleneck. AUTO-
BAYES is a fully automatic program synthesis system for
data analysis problems which is intended to increase the
speed with which reliable data analysis software can be de-
veloped. Its input is a declarative problem description in
form of a statistical model; its output is documented and op-
timized C/C++ code. Its schema-based approach allows the
use of advanced algorithms and data structures and yields
fast turnaround times comparable to compilation times, sup-
porting the iterative development style typical for the do-
main. AUTOBAYES thus enables the scientists to think and
program in models instead of code.

In this paper, we take the analysis of planetary nebulae

images taken by the HST and show that and how AUTO-
BAYES can be used to automate the implementation of the
necessary analysis programs. We follow the approach de-
scribed in [7] and use AUTOBAYES to derive code for the
published models. The main contribution of this paper is to
demonstrate that AUTOBAYES has reached a level of matu-
rity which makes it applicable to real-life problems.

2 Planetary Nebulae

Stars with initial masses between roughly 0.8 and 8 solar
masses turn into red giants when they run out of hydrogen
to support their primary fusion process. In a secondary fu-
sion process, they then burn the helium produced by the
hydrogen fusion, resulting in a carbon-oxygen core roughly
the size of the earth. Eventually, the secondary fusion runs
out of fuel as well and the red giants begin to collapse into
extremely hot white dwarfs. During this collapse, most of
the material is expelled, forming blown-out gaseous shells
which are called planetary nebulae. The shells continue to
expand into a variety of shapes and after 10,000 to 50,000
years their density becomes too small for the nebulae to be
visible. Planetary nebulae occupy an important position in
the stellar life-cycle and are the major sources of interstellar
carbon and oxygen but their physics and dynamics are not
yet well understood. The characterization and analysis of
their properties is thus an important task in astronomy.

3 AutoBayes

AUTOBAYES [5, 6] is a fully automatic program synthe-
sis system for data analysis problems.1 It is implemented in
SWI-Prolog and currently comprises about 64,000 lines of
documented code. Figure 1 shows the system architecture;
in the following we explain the major components.

Statistical Models and Specification Language. A sta-
tistical model describes the expected properties of the data
in a fully declarative fashion: for each problem variable,

1http://ase.arc.nasa.gov/autobayes

model specification

R
ew

ri
tin

g

Input Parser

Test−data

Generator
Synthesis Kernel

Code Generator

...

E
qu

at
io

n

So
lv

er

σ1 = 0.103

E
ng

in
e

...

intermediate code

C / C++ code

µ1 = 3.024

Optimizer

AutoBayes

σ2 = 0.437

µ2 = 2.948

0

10

20

30

40

50

60

70

80

90

100

0.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

re
l.

cl
a
ss

 d
e
n
si

ty

data
class 1
class 2
class 3

3.232323
3.342387

3.891308
3.550812

Schema

 mu[j] = ...

 for j=0;j<c;j++ {

3.244621

5.412458

for i=0;i<n;i++ {

3.000217

}
2.994381

 sigma[j] = ...

Sy
st

em
 u

til
iti

es

Library

5.125683

...

const nat n.
const nat c = 3.

data double x(I:=1..n) ~ gauss(mu(c(I)),sigma(c(I))).
max pr(x | {phi, mu, sigma} for {phi, mu, sigma}.

 }

raw data fitted data

intermediate code

internal representation

Figure 1. AUTOBAYES system architecture.

properties and dependencies are specified via probability
distributions and constraints. Figure 2 shows how a model
(see Section 4.1 for more details) is specified in AUTO-
BAYES.2 Line 1 just identifies the model. Lines 2 and 4
introduce symbolic constants whose values are left unspec-
ified but constrained by the where-clauses in lines 3 and 5,
respectively; constraints can also be complex boolean for-
mulae tying together multiple variables (cf. line 11). Lines
6–15 introduce the model parameters, again constrained
by where-clauses. Variables can be annotated with as-
clauses; these textual annotations are propagated into the
generated code to improve its legibility. Line 16 declares
the observation (denoted by the data-modifier) as a ma-
trix; its expected properties are specified in the distribution
clause in line 17. In general, a distribution clause is of the
form ���������	�
 where � is a variable or vector/matrix el-
ement, � is a distribution, and �	 are the distribution’s pa-
rameters. Distributions are chosen from a predefined list but
adding more distributions is straightforward. The final line
in the model is the task clause. It specifies the analysis prob-
lem the synthesized program has to solve, i.e., maximizing
the conditional probability w.r.t. the set of goal variables.

Bayesian Networks. AUTOBAYES uses Bayesian net-
works to represent the statistical models internally. They
are directed, acyclic graphs where nodes represent random
variables and edges define probabilistic dependencies be-
tween them. This yields an efficient encoding of the joint
probability distribution over all variables and allows to re-

2Keywords have been underlined and line numbers have been added for
reference; comments start with a % and extend to the end of the line.

1 model gauss as ’2D Gauss-Model for Nebulae Analysis’.

% Image size
2 const nat nx as ’number of pixels, x-dimension’.
3 where 0 < nx.
4 const nat ny as ’number of pixels, y-dimension’.
5 where 0 < ny.

% Center; assume center is on the image
6 double x0 as ’center position, x-dimension’.
7 where 1 =< x0 && x0 =< nx.
8 double y0 as ’center position, y-dimension’.
9 where 1 =< y0 && y0 =< ny.

% Extent; assume full nebula is on the image
10 double r as ’radius of the nebula’.
11 where 0 < r && r < nx/2 && r < ny/2.

% Intensity; upper bound determined by instrument
12 double i0 as ’overall intensity of the nebula’.
13 where 0 < i0 && i0 =< 255.

% Noise; upper bound arbitrary, for initialization
14 double sigma as ’noise’.
15 where 0 < sigma && sigma < 100000.

% Data and Distribution
16 data double pixel(1..nx, 1..ny) as ’image’.
17 pixel(I,J) ˜ gauss(i0 * exp(-((I-x0)**2 + (J-y0)**2)

/ (2*r**2)),
sigma).

% Task
18 max pr(pixel| � i0,x0,y0,r,sigma) for � i0,x0,y0,r,sigma .

Figure 2. Specification for Gaussian model.

place expensive probabilistic reasoning by faster graphical
reasoning. Bayesian networks are thus a common represen-
tation method in machine learning [3, 9].

Schemas and Schema Library. Purely deductive pro-
gram synthesis is notoriously difficult to scale up. AUTO-
BAYES thus follows a schema-based approach. A schema
consists of a parameterized code fragment (i.e., template)
and a set of constraints. The parameters are instantiated
by AUTOBAYES, either directly or by calling itself recur-
sively with a modified problem. The constraints determine
whether a schema is applicable and how the parameters can
be instantiated. Constraints are formulated as conditions on
the specified model or on the Bayesian network. This al-
lows the network structure to guide the application of the
schemas and thus to constrain the search space. Schemas
can in principle be understood as conditional rewrite rules
on partially instantiated programs where the only redexes
are maximization tasks. They are implemented as Prolog-
clauses and search control is thus simply relegated to the
Prolog-interpreter: schemas are tried in their textual or-
der. This simple approach has not caused problems so far,
mainly because the domain admits a natural layering which
can be used to organize the schema library. The top layer
comprises network decomposition schemas which try to
break down the network into independent subnets, based on
independence theorems for Bayesian networks. These are
domain-specific divide-and-conquer schemas: the emerg-
ing subnets are fed back into the synthesis process and the
resulting programs are composed to achieve a program for
the original problem. AUTOBAYES is thus able to automat-

ically synthesize larger programs by composition of differ-
ent schemas. The next layer comprises more localized de-
composition schemas which work on products of indepen-
dent random variables. Their application is also guided by
the network structure but they require more symbolic com-
putations. The core layer of the library contains statistical
algorithm schemas as for example expectation maximiza-
tion (EM) [8] and k-Means; these generate the skeleton of
the program. The final layer contains standard numeric opti-
mization methods as for example the Nelder-Mead simplex
method or different conjugate gradient methods. These are
applied after the statistical problem has been transformed
into an ordinary numeric optimization problem and AUTO-
BAYES failed to find a symbolic solution for the problem.
Currently, the library comprises 28 top-level schemas plus
some additional variants (e.g., different initializations).

Symbolic Subsystem. AUTOBAYES relies on symbolic
computations to support schema instantiation and code op-
timization. The core of the symbolic subsystem is a small
rewrite engine which supports associative-commutative op-
erators and explicit contexts. AUTOBAYES thus allows
contextual rules as for example �

� ���������
	���� where�������
	�� means “rewrites to, provided ������ can be proven
from the current context � .” The contexts are managed al-
most transparently by the rewrite engine; rewrite systems
only need to contain non-congruent propagation rules which
modify the contexts under which immediate subterms are
rewritten, e.g., � ? � : ���� � � ��� �
 ? � ��� �! #"
 : � �
� ��
$#"

for C-style conditionals. Here, �� � and � � denote context
propagation from and normal form computation under the
context � .

Expression simplification and symbolic differentiation,
similar to those in Mathematica, are implemented on top
of the rewrite engine. The basic rules are straightforward;
however, vectors and matrices introduce the usual aliasing
problems and require careful formalizations. For example,
as the index values % and & are usually unknown at synthe-
sis time, the partial derivative ' �)(� ' �
* can only be rewrit-
ten into % � & ? � : � . Some rules require explicit meta-
programming, e.g., when bound variables are involved. Ab-
stract interpretation is used to efficiently evaluate frequently
occurring range constraints such as �,+ � or �-��.� .
AUTOBAYES implements a domain-specific refinement of
the standard sign abstraction where numbers are not only
abstracted into pos and neg but also into small (i.e., / � /10 �)
and large. In total, the symbolic subsystem contains 365
rewrite rules.

For equation solving, AUTOBAYES essentially relies on
a simple low-order polynomial (i.e., linear, quadratic, and
simple cubic) symbolic solver built on top of the core sys-
tem. However, the solver also shifts and normalizes ex-
ponents, recognizes multiple roots and bi-quadratic forms,
tries to find polynomial factors, and handles expressions in

� and � �32 �
 which are common in statistical applications.
A smaller part of the symbolic subsystem implements

the graphical reasoning routines for Bayesian networks, for
example computing the parents, children, or Markov blan-
ket [9] of a node.

Intermediate Code. The code fragments in AUTO-
BAYES’ schemas are written in an imperative intermediate
language. This is essentially a “sanitized” variant of C (i.e.,
no pointers, side effects in expressions etc.); however, it also
contains a number of domain-specific constructs like vec-
tor/matrix operations, finite sums, and convergence-loops.

Optimization. Straightforward schema instantiation and
composition produces suboptimal code; worse, many of the
suboptimalities cannot be removed completely using a sep-
arate, after-the-fact optimization phase. AUTOBAYES thus
interleaves synthesis and optimization. Schemas can ex-
plicitly trigger large-scale optimizations which take into ac-
count information from the synthesis process. For exam-
ple, all numeric routines restructure the goal expression us-
ing code motion, common sub-expression elimination, and
memoization; since the schemas know the goal variables,
no dataflow analysis is required to identify invariant sub-
expressions, and code can be moved around aggressively,
even across procedure borders.

Code Generation. In a final step, AUTOBAYES trans-
lates the optimized intermediate code into code tailored for
a specific run-time environment. Currently, AUTOBAYES

has code generators for the Octave and Matlab environ-
ments; it can also produce standalone C and Modula-2 code.

Each code generator employs one rewrite system to elim-
inate the constructs of the intermediate language which are
not supported by the target environment (“desugaring”) and
a second rewrite system to clean up the desugared code;
most rules are shared between the different code generators.

4 Models and Code Derivation

Knuth and Hajian [7] present three models they used to
analyze images of the planetary nebula IC418 (cf. Figure 3).
Each model estimates a parameter set which is then refined
by the subsequent models. Their common idea is (%) that the
light intensity which is expected at a given pixel position
� ��4 	�
 on the image can be described by a function 5 of this
position, the (unknown) nebula center � � � 4 	 �
 , and some
additional parameters, and (%6%) that the measured intensities
can be fitted against F using a simple mean square error
minimization. The only difference between the models is
the form of 5 .

Here we sketch how these models are represented in
AUTOBAYES’ specification language, and how the code is
derived. In particular, we show how the interaction between
graphical reasoning, symbolic computation, and code in-
stantiation is crucial for a fully automatic derivation.

4.1 Gaussian Model

In the first model, 5 has the shape of a bell whose apex
is at � � � 4 	 �
 . This can be formalized by a two-dimensional
Gaussian curve:

5 � ��4 	�
 � % � � � 2 � �����)���
	�� �� ��� ��	��� 	
(1)

The additional parameters % � and � capture the overall inten-
sity and extent of the nebula (i.e., the height and diameter
of the bell).

Model Specification. The AUTOBAYES specification
shown in Figure 2 is a direct transcription of the underly-
ing mathematics. The distribution clause for the image pix-
els in line 17 formalizes the idea that the expected value
of the pixel � % 4 &
 can be described by the function 5 � ��4 	�

from Equation (1); remember that the expected value of a
Gaussian random variable is given by the mean (i.e., first
parameter) of the distribution. The standard deviation (i.e.,
second parameter) of the distribution represents the error
of the fit. In combination with the Gaussian distribution,
the task clause in line 18 thus specifies a mean square er-
ror minimization. The constraints formalize additional as-
sumptions on the structure of the image or the output of the
instrument (cf. line 13).

Mathematical Derivation. For the models here the pro-
gram derivation can be separated such that a purely math-
ematical derivation is followed by a pure instantiation of
code templates; in general, however, symbolic computation
and template instantiation are interleaved.

The first step unfolds the pixel-matrix element-wise, us-
ing a decomposition schema based on the conditionalized
version of the general product rule for probabilities:����� pixel �������! "���$#���� � �&%(')+* nx,�-(. * ny/ -(. �0�1� pixel � �$��23'4��� � �$ � �$# � � � �!%5'
The precondition for this step is that the pixels are pairwise
independent, given the remaining variables, i.e., that����� pixel � �$��23'4� pixel � �
6��
2�67'��$�����$ "���$#8��� � �$%5') �0�1� pixel � �$��23'4��� � �$ � �$# � � � �!%5'
holds for all % 4 & 4 %$9 4 &�9 with % �� %$9 or & �� &�9 . AUTOBAYES can
easily check this on the Bayesian network: since no edge
connects the pixel-node to itself, the pixels are pairwise in-
dependent by the definition of Bayesian networks

The probability is now a likelihood, i.e., the single vari-
able pixel � % 4 &
 on the left of the conditioning bar depends
exactly on all the variables on the right. Hence, it can be re-
placed by the distribution function. AUTOBAYES’s domain
theory contains rewrite rules for the most common distri-
butions; additional distributions can easily be added. This
rewrite yields the likelihood-function

* nx,:-;. * ny/ -;. <= >�? %5@BADC E
F
pixel G ,
H /JI E , ��K L�MONQP � M1R:S 	DT NVU � MXW�S 		&Y 	 Z 	

@&[

which must be maximized w.r.t. goal variables %�\ , � � , 	 � ,� , and] . In general it is easier to work with the log-
likelihood function which yields the same solutions during
maximization since the logarithm is strictly monotone. Af-
ter simplification, AUTOBAYES thus derives the following
log-likelihood function:^)`_ nx A ny A�aQb�c � >�? ' _ nx A ny A�aQb�c � %5' _<> % @ A d nx,:-;. d ny/ -(. F

pixel � �e�
23' _ � � A�C E G
, E0f � I 	Jg G / E0h � I 	@!i 	 Z @

A solution can now be attempted numerically or symboli-
cally. By default, AUTOBAYES tries to find symbolic solu-
tions first. In this case, it computes the partial differentialsj ^j � �) <% @ A�d nx,:-;. d ny/ -;. pixel � �$��23' ADC E G

, E"f � I 	Dg G / E0h � I 	 I@!i 	_ � �% @ A�d nx,:-;. d ny/ -;. C E G
, E"f � I 	Jg G / E"h � I 	 Ii 	j ^j %) <%lk AVd nx,:-;. d ny/ -;. F

pixel � �$��23' _ � � AmC E G
, E"f � I 	�g G / E"h � I 	 I@!i 	 Z @

_ nx
K
ny%

which are essentially simple polynomials in % � and] ,
and the built-in equation solver easily solves the equations
'(n � ')% � � � and '(n � '(] � � ; however, attempts to solve
for the remaining three variables � � , 	 \ , and � fail.

Code Instantiation. At this point, the symbolic compu-
tations have been exhausted without leading to a complete
symbolic solution. AUTOBAYES thus derives code for a nu-
meric solution, incorporating the computed partial symbolic
solution. This is done in two steps, which both correspond
to schemas in the schema library.

In the first step, AUTOBAYES converts the symbolic so-
lutions into assignment statements and identifies their order
and position relative to the remaining code which is still to
be synthesized. Since both solutions contain at least one of
the remaining variables, they must follow that code; since
the solution for] contains % � , its assignment must in turn
follow that of % � . AUTOBAYES then substitutes the solu-
tion into the formula and thus eliminates these variables.
Variables whose solutions do not depend on any unsolved
variable are symbolic constants and need not be eliminated;
their corresponding assignments must precede the missing
code block. Since this reasoning is done on the side-effect
free expression level, a dataflow analysis is not required.

In the second step, AUTOBAYES instantiates a numeric
optimization routine, in this case the Fletcher-Reeves con-
jugate gradient method. The schema wraps an implemen-
tation provided by the GNU Scientific Library (GSL); this
includes specific initialization code and auxiliary functions
to evaluate the goal function and the derivatives. AUTO-
BAYES uses heuristics to derive initialization code from
specification information, e.g., the midpoints of the speci-
fied ranges. It also generates the auxiliary functions; since a

straightforward translation of the goal expression would be
prohibitively inefficient, it aggressively optimizes the func-
tions. The optimizations include common subexpression
elimination, memoization, and code motion, and are applied
both intra- and inter-procedural. They can also take into ac-
count locally constant variables, since AUTOBAYES knows
the set of goal variables. Again, a dataflow analysis is not
required since the reasoning is done on the expression level.

Figure 3. IC418 image with results of Gaus-
sian analysis superimposed.

Program Results. We applied the generated program to
the image of IC418 shown in Figure 3, where the results
are superimposed. The program correctly approximates the
center but its estimate of the overall extent is off the mark.

4.2 Sigmoidal Models

The Gaussian model hard-codes a number of assump-
tions about the structure of the image, in particular that it
is circular, with a pronounced intensity peak and a gradual
intensity falloff at the edges. However, a quick look at Fig-
ure 3 shows that the image is clearly elliptic, with a broad
intensity plateau and a pronounced falloff at the edges.

Simple Sigmoidal Model. Knuth and Hajian thus refine
their initial model and replace the two-dimensional Gaus-
sian by a two-dimensional sigmoidal function of the form

5 � ��4 	
 � % � � � � 2 �
��� � ����� � � ��� �&�
	�� (2)

with the auxiliary function � � ��4 	�
�1� 5�!#�')� f�f A � "� _ ' @�� > f�h A � "� _ ' � #8� _ #�' � hJh A � #8� _ #�' @
and constants � � � , � � , and � � f�f)�� b�� @��� @f � ����� @��� @h hJh) ����� @��� @f � � b�� @��� @h f�h) ����� � A � b�� �� @f A � @h
where � � and � are the extent of the nebula along its axes,�

is its orientation, and the intensity falloff.
The specification for this modified model can easily be

derived from the one for the Gaussian model shown in Fig-
ure 2, essentially by replacing the mean value in the distri-
bution clause (cf. line 17) with the new version of 5 , and
adding declarations for the new model variables. The auxil-
iary constants and functions are represented as deterministic

Model � Spec � � Code � ! synth

gauss 18 1045 36.4s
-nosolve 703 2.4s
-nolib 764 4.9s
-nolib -nosolve 494 1.1s

sigmoid 28 - -
-nosolve 12650 39m42.9s
-nolib -nosolve 872 3.2s

sigmoid-0 27 581 1.3s
sigmoid-2 35 1202 6.7s

Table 1. Summary of Results

nodes in the Bayesian network, which are expanded like C-
style macro definitions during the program definition. The
program for this model is then derived using the same steps
as before; the only difference is that the symbolic expres-
sions become much more complicated.

Axis-Aligned Sigmoidal Model. The derivation and re-
sulting program can be simplified and sped up, if the nebula
image is assumed to be axis-aligned. This can be modeled
by changing the random variable

�
into a constant with a

known value of zero. AUTOBAYES can then propagate this
constant value already on the specification level and derive
code from the simplified model.

Dual Sigmoidal Model. In a final refinement step,
Knuth and Hajian try to estimate the thickness of the shell
as well. Since projecting the three-dimensional ellipsoidal
shell of gas onto a two-dimensional image produces an el-
lipsoidal blob surrounded by a ring of higher intensity, the
image can be modeled as the difference of two sigmoidal
functions with the same center and orientation but different
extents, intensities, and falloffs. Re-using the auxiliary def-
initions from the simple sigmoidal model, this refinement
can also be specified easily for AUTOBAYES.

5 Evaluation

Table 1 summarizes the synthesis results; for each model
it lists the size of the specification and the generated pro-
gram including generated comments, and the synthesis
time measured on a 2GHz/4GB LinuxPC. -nosolve and
-nolib are AUTOBAYES command line options which
suppress the application of the schemas using partial sym-
bolic solutions and library components as described above.

The table shows that the specification language allows
a compact problem representation; none of the models re-
quires more than 35 lines. The major difficulty in writing
the specifications was to understand and then to express
the core idea of the scientists’ models, which was not com-
pletely clear from the original paper. After that, each spec-
ification took only a few minutes to write and one or two
iterations to debug and complete (e.g., adding constraints).

The table also shows the overall feasibility of the ap-
proach. AUTOBAYES is able to derive code for each of the

models; scale-up factors are generally around 1:30. Synthe-
sis times are generally only a few seconds and comparable
to compilation times of the derived code. However, AUTO-
BAYES spends most of the time simplifying the partial dif-
ferentials and then optimizing the auxiliary functions eval-
uating them; in the sigmoid-case, this even exhausts the
available memory. With the command line options, AUTO-
BAYES can be forced away from these expensive calcula-
tions and code is derived much faster, using the Nelder-
Mead simplex method which requires no differentials.3

Search space explosion is a common problem in pro-
gram synthesis. In our case, it is mitigated by the deter-
ministic nature of the symbolic-algebraic computations, the
higher level of abstraction inherent to the schemas, and the
inherent structure of the schema library. Still, search spaces
are large. For the gauss-model, AUTOBAYES derives 224
programs, many of them equivalent, in 35 minutes total
synthesis time. Parts of the search space can be pruned
away manually by command line options like -nosolve,
but more implicit control is required, especially when the
schema library grows further.

The scientists’ original Matlab code uses a simple gradi-
ent descent method; it computes the differentials in a single
iteration over all pixels while the synthesized code iterates
once for each differential but reuses memoized subexpres-
sions. This decomposition requires domain knowledge not
yet formalized for AUTOBAYES. For the gauss-model,
the (interpreted) Matlab-code is approx. 70 lines, mainly for
the computation of the gradient. It requires on average 174
seconds to converge, while the synthesized C++-code only
requires 11 seconds. Both versions give the same results.

6 Related Work

Scientific computing is a popular application domain for
program synthesis; however, most work focuses on wrap-
ping solvers for ordinary (ODEs) and partial differential
equations (PDEs). SciNapse [1] is a “problem-solving envi-
ronment” for PDEs; it supports code generation for a variety
of features in the PDE-domain, e.g., coordinate transforma-
tion and grid generation. Ellman et al. [4] describe a system
to generate simulation programs from ODEs. Both systems
also follow a schema-based approach.

Other domains have been tackled less often. Amphion
[10] and Amphion/NAV [12] are purely deductive synthesis
systems for the astronomical calculation and state estima-
tion domains. The scale-up difficulties encountered there
led to a switch to a schema-based approach and the de-
velopment of AUTOFILTER [11] as a domain-specific ex-
tension of AUTOBAYES. It provides its own specification

3The table entries for sigmoid-0 and sigmoid-2 thus refer to the
-nolib -nosolve variants.

language and schemas but reuses the core system. Plan-
ware [2] deductively synthesizes high-performance sched-
ulers. It uses concepts from higher-order logic and category
theory to structure the domain theory and thus to reduce the
required proof effort.

7 Conclusions

We successfully applied AUTOBAYES to the analysis of
planetary nebulae images taken by the HST. We specified
the models presented in [7], from which AUTOBAYES was
able to automatically generate code; in tests, this code gave
the same results as the scientists’ Matlab code.

The crucial success factors are the schema-based syn-
thesis approach, an efficient problem representation via
Bayesian networks, and a strong symbolic-algebraic sub-
system. This combination is unique to AUTOBAYES and
allows us to solve realistic data analysis problems.

AUTOBAYES is an ongoing development effort; recent
improvements include the integration of the GSL and the
aggressive optimization of goal expressions. Both were in-
strumental in this case study to derive efficient code. Cur-
rent work focuses on adding schemas that enable solutions
for new classes of models, e.g., covariate data. Similarly,
the numeric optimization schemas are extended with nu-
meric constraint handling to produce more robust code.

References

[1] R.L. Akers et al. SciNapse: A problem-solving environment for par-
tial differential equations. IEEE Comp.Sci.Eng., 4(3):33–42, 1997.

[2] L. Blaine et al. Planware – domain-specific synthesis of high-
performance schedulers. In ASE-13, pp. 270–280. IEEE, 1998.

[3] W.L. Buntine. Operations for learning with graphical models. JAIR,
2:159–225, 1994.

[4] T. Ellman, R. Deak, and J. Fotinatos. Knowledge-based synthe-
sis of numerical programs for simulation of rigid-body systems in
physics-based animation. In ASE-17, pp. 93–104. IEEE, 2002.

[5] B. Fischer and J. Schumann. AutoBayes: A system for generating
data analysis programs from statistical models. JFP, 13(3):483–
508, 2003.

[6] A.G. Gray, B. Fischer, J. Schumann, and W. Buntine. Automatic
derivation of statistical algorithms: The EM family and beyond. In
NIPS-15. MIT Press, 2002.

[7] K.H. Knuth and A.R. Hajian. Hierarchies of models: Toward under-
standing of planetary nebulae. In Bayesian Inference and Maximum
Entropy Methods in Science and Engineering 22, pp. 92–103. 2002.

[8] G. McLachlan and T. Krishnan. The EM Algorithm and Extensions.
Wiley, 1997.

[9] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks
of Plausible Inference. Morgan Kaufmann, 1988.

[10] M. Stickel et al. Deductive composition of astronomical software
from subroutine libraries. In CADE-12, LNAI 804, pp. 341–355.
Springer, 1994.

[11] J. Whittle and J. Schumann. Automating the implementation of
Kalman-filter algorithms. In review.

[12] J. Whittle et al. Amphion/NAV: Deductive synthesis of state esti-
mation software. In ASE-16, pp. 395–399. IEEE, 2001.

